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ABSTRACT
Background  and  Objective:  Scale  deposition  in  oil  wells  has  been  recognized  to  be a major
operational  problem  as  well  as  a  major  cause  of  formation  damage,  both  in  injection  and 
producing  wells.  Scales  contribute  to  equipment  wear,  corrosion,  flow  restrictions,  and  undesirable
back pressures that cause a drastic decline in oil and gas production. This study presents a data-driven
approach  to  investigate  the  effect  of  gas-lift  injection  rate  on  the  scaling  tendencies  of  oil wells.
Materials and Methods: Mathematical models were used to obtain insight into the temperature and
pressure profiles of gas-lifted wells as a function of gas injection rates, while the feed-forward neural
network was used to develop a classification model to predict the status of the well regarding scale
deposition. Univariate histogram/density distribution plots for the different variables to show how each
variable influences scale precipitation, while pair plots that show the bivariate relationship between
variables in the dataset and their influence on scale formation were also developed. A single-factor
ANOVA was performed at a significance level of 0.05.  Results: The classification model developed in this
study accurately predicted the status of over 98% of the test wells, of which 37 wells were predicted to
deposit scales and 68 not to deposit scales. The model only faltered in not adequately predicting two wells
of their actual status. The accuracy, precision, sensitivity, and specificity of this model are 0.9813, 0.9855,
0.9855, and 0.9855, respectively. Conclusions: This model can provide benefits in investigating the scaling
potential of gas-lifted wells compared to empirical models that apply simplifying assumptions with a high
degree of accuracy.
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INTRODUCTION
Oil production from depleted reservoirs is associated with very low drawdown that often results to a
corresponding low oil flow rate. Depleted reservoirs lack sufficient energy to produce fluids into the
wellbore and transport the same to the surface without an artificial lift system1,2. The primary purpose of
an artificial lift system is to lower the bottomhole flowing pressure and provide the lift energy necessary
to transport the oil from the bottom of the well to the surface3-5. Artificial lift systems designed for this
purpose are broadly classified into two groups: The gas-lift system and the pumps.
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Gas-lifting is a form of artificial lift method where compressed natural gas is injected via the gas-lift
mandrels in the tubing-casting annulus to lower the viscosity of the crude in the tubing6,7. The gas then
mixes up and aerates the oil within the tubing, which lightens the fluid column that enhancing productivity
through the reduction of viscosity and pressure losses8. This aeration process drastically reduces the
hydrostatic pressure of the fluid in the tubing9. Gas-lifting can be done continuously or intermittently,
depending on the case and severity of the problem. Irrespective of the lifting method deployed, gas lifting
decreases the flowing bottomhole pressure, which consequently results to an increase in the pressure
differential across the sand face and the in-situ reservoir pressure, the major driver of reservoir
deliverability10,11.

To  plan  for  gas-lifting  requires  the  assurance  of  lift  gas  in  a  field  or  adjacent  fields  to optimize
the gas-lifting process. Unfortunately, due to competing projects, an increase in the demand for gas lift
and other operating constraints can impose a limitation on the optimal recovery from gas-lifted wells.
Assuming the only operating constraint to be the availability of gas lift in a field, the available gas lift must
be optimally allocated among all gas-lifted wells to maximize oil production. Even where there is an
unlimited available gas for gas-lifting, it is important to optimize the injection rate and take into
consideration the gas utilization factor to maximize production from each gas-lifted well. Thus, the optimal
allocation of available gas and the application of the optimal injection rate in gas-lifted wells to maximize
productivity in a field is what could be termed the gas-lift optimization problem12. Considering other
operating conditions peculiar to a field and wellbore will generally result to a broader problem definition.
Operating  a  gas-lift  under  too  low  or  too  high  gas-lift  injection  rates  has  some  disadvantages.
If the gas lift injection rate is too low, the full lift potential of the gas-lift system would not be achieved,
resulting in an inefficient operation8. Also, if the gas lift injection rate is too high, pressure surges induced
by the gas lift in production facilities may be so high that they can lead to other operational problems;
needless investments in compression, and other process equipment not necessary, and losses could be
incurred8. In essence, gas lift design optimization seeks to initiate a cost-effective gas lift program by
deciding the number of gas lift valves required, their depth, their respective operating pressures, the
compressor discharge, and obviously, materials and equipment specification that will result in an optimum
oil recovery at the lowest possible cost8.

The distribution of liquid saturation in hydrocarbon reservoirs makes it nearly impossible to produce
hydrocarbons from these reservoirs without also producing some amount of water. As this produced water
moves from the reservoir into the wellbore and up the production tubing, the pressure and temperature
decrease. This decrease in pressure and temperature in the tubing has the potential to change the
solubility of the salts originally dissolved in the formation water13,14. Depending on the amount of water
produced as well as the particular salts present in the formation water and its concentration, precipitation
of salt minerals (scales) could occur around perforations, casing, along tubing, and even in surface
equipment15. Scale is a mineral deposit that forms through a chemical reaction on downhole and surface
facilities due to changes in temperature, pressure, and composition of an oil-water solution during
production16.

When ion activities in a solution exceed their saturation limits due to changes in operational conditions,
scale precipitation or crystallization could occur; and when these operational conditions degenerate
further, the solution could become supersaturated, which could lead to scale deposition17. Thus,
supersaturation of dissolved materials in solution is the main factor contributing to scale formation, when
their concentrations exceed their equilibrium concentration in solution15. The degree of supersaturation,
also known as the scaling index, determines the intensity of the precipitation reaction. A higher scaling
index implies a greater likelihood of salt precipitation18. In addition to supersaturation conditions, particle
nucleation and particle growth kinetics also play significant roles in determining the severity of scaling19.
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Scaling during oil and gas production could be induced or self-scaling of mineral water. Generally,
changes in operational conditions, such as a decline in pressure, temperature, changes in pH, and the
mixing of incompatible waters from the formation or injection wells with other minerals, could trigger the
precipitation and subsequent deposition of scales15. The injection of compressed gas during gas-lifting
in itself can also cause changes in pressure, temperature, and composition of the in-situ fluid; this could
also cause scaling20. If the temperature or pressure of the well fluids deviates from the equilibrium values
for the amount of dissolved minerals in the produced water accompanying the oil, it leads to the
formation of inorganic scales. Scale precipitation in surface and subsurface oil and gas production facilities
is a major operational problem and can cause damage to injection or producing wells. Scale deposition
in oilfields leads to various technical and operational complications, and the severity varies in different
production systems such as blockages in perforations, pipe obstructions, equipment damage, equipment
wear, and corrosion, resulting in significant economic losses due to flow restrictions, decreased production
rates, and operational downtime21-26. Operational downtime could come from re-perforation, frequent
replacement  of  down-hole  equipment,  re-perforation  of  scaling-producing  intervals,  reaming and
re-drilling of plugged oil wells, stimulation of plugged oil-bearing formations, and various other remedial
work-over operations24.

Although gas-lift is an established technology for improving the performance of oil wells27, injecting excess
gas will either increase the bottomhole pressure which will lead to the decline in the liquid production
rate28 or alter the temperature and pressure of the well, that may result to the precipitation of inorganic
scales29; while injecting too small amount of gas will result to inefficient operation since the full lift
potential of the gas is not utilized.

Dyer and Graham13 conducted a study on the impact of temperature and pressure on oilfield scale
formation and observed that as pressure increased, the scaling tendency of carbonate and sulphate
scaling brine decreased. Conversely, as the temperature increased, the scaling tendency of carbonate
scaling brine increased while that of high sulphate scaling brine decreased. From this study, it could be
inferred that temperature has a significant effect on scaling tendency compared to pressure. However, the
study did not focus on how these changes in pressure and temperature can be induced or the extent to
which they can vary due to operational factors.

In gas-lifted wells, the most commonly used technique for estimating the oil production rate is the Nodal
analysis method. However, this method can be time-consuming and slow15. This slowness can be
problematic in contemporary studies, such as closed-loop control of wells, where real-time optimization
is desired. By the time the optimization process is completed using the traditional Nodal analysis method,
the  input  parameters  may  have  already  changed.  One  factor  contributing  to  the  slowness of Nodal
analysis  is  the  estimation  of  temperature  profiles  in  wells.  Existing  techniques  like  heat balance
calculations are accurate  but  slow,  while  linear  profile  assumptions  are  faster  but  less  accurate  and 
not  commonly used.

To address this issue, Mahdiani and Khamehchi15 proposed a combination model that integrates heat
balance and linear temperature profile estimation methods. This approach offers a threefold increase in
speed compared to traditional heat balance calculations while maintaining accuracy comparable to heat
balance calculations. This new approach enables faster nodal analysis without sacrificing accuracy, making
it more suitable for optimization purposes. Hasan and Kabir30 introduced a technique for estimating the
fluid temperature profile in gas-lifted wells using a mechanistic model. They emphasized  the  importance 
of  understanding  the  temperature  and  pressure  variations  at  the gas injection point and downstream
for efficient gas-lift optimization. Assuming a linear temperature profile for the annular fluid had been a
common practice, but a more holistic method of using a mechanistic model to account for the well depth
and production time regardless of wellbore deviation angle was developed by Hasan and Kabir30.
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Several methods exist for predicting the formation of scale in oil and gas-producing facilities. Oddo and
Tompson31 developed a simplified model for calculating the saturation index of CaCO3 at high
temperatures and pressures in brine solution using field parameters by changing the chemical equilibria
of solutions of interest. Oddo and Tompson32 also observed that predicting scaling potentials could be
difficult, developed different saturation indices and computer algorithms to predict if, when, and where
scaling would occur in oil and gas production systems for barium, calcium, strontium, and magnesium
sulphate scales. Hamid et al.33 developed an empirical model using AI to predict scale growth rate at
inflow control valves. Al-Hajri et al.21 developed a data-driven methodology that integrates production
surveillance, chemistry, machine learning, and probabilistic theory to predict CaCO3 scale formation in oil
wells. Bahadori34 developed a simple predictive tool to estimate the potential precipitation of CaCO3 scale
formation in saline aquifers used for CO2 sequestration. Haarberg et al.35 developed an equilibrium model
for predicting the solubility products of scale-forming minerals in reservoir and production equipment
during oil recovery. Most of these models predicted scale formation potential using either
thermodynamics or the solubility index of scale-forming products during the production or injection of
incompatible water. None investigated or predicted the tendencies of the factors that could promote scale
formation during gas-lifting, even though some studies have investigated the prediction of tubing
pressure distribution of gas-lifted wells36. In this study, a machine learning classification model was
developed to predict the occurrence of scale and also determine the key variables that could promote and
strongly influence the deposition of scale during gas-lifting operations.

MATERIALS AND METHODS
Study area: This study was carried out using data obtained from 535 gas-lifted wells in the Niger Delta
of Nigeria. The dataset included measurements of temperature, pressure, and various ion concentrations
of the formation fluids. It targeted mainly gas-lifted wells. It was a research project that was conducted
between March, 2022 and February, 2023 at the Department of Petroleum and Gas Engineering, University
of Port Harcourt, Port Harcourt, Rivers State, Nigeria.

Mechanical  modelling:  The  mechanistic  model  using  the  energy balance  technique  proposed by
Hasan and Kabir30 was adopted in this study to determine the temperature profiles of the tubing fluids
as well as the temperature profile of the injected gas in the tubing-casing annulus of a well operating
under gas-lift; while Kabir and Hasan37 model was used to predict the pressure profile of gas-lifted wells
and investigate the pressure variation within the tubing as a function of gas injection rate. Taitel et al.38

was used to identify the flow regime transition from bubbly flow to slug flow, which is based on the gas
void fraction within the tubing. The friction factor was determined using the explicit relationship by Chen39

while the Reynolds’ number was estimated using the density and viscosity of the liquid phase, since the
liquid is the continuous phase. A feed-forward neural network machine learning algorithm was then used
to develop a classification model to predict the status of the well it will deposit scale or not.

Data presentation and analysis: To develop a reliable predictive model, the applicability and accuracy
are directly associated with the validity of the dataset used for its development. Careful study on the
mechanism of scale deposition shows that the main influencing variables that will be required as inputs
into the machine learning model are40,41,25:

• Temperature
• Pressure
• CO2 mole fraction
• pH and
• Ca2+, HCO3G, and CO32G concentrations
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In developing the classification model, the state of the well as regards scale or not to scale was taken as
the  target.  About  535  data  points  containing  the  above  input  variables  were  collected  and
properly pre-processed to minimize training errors. The basic techniques used for the pre-processing were
noise reduction, handling of missing data points, and normalization.

Understanding the relationship between quantitative variables in a dataset is a necessary step in
exploratory data analysis and is aimed at discovering patterns within the dataset that can be utilized for
future prediction purposes. The collected field data were analyzed using different univariate and
multivariate graphical formulations by looking into their statistical distributions in the form of histograms,
scatter plots, and line plots

RESULTS AND DISCUSSION
Table 1 shows the statistical description of the dataset obtained for scale appearance in oil wells as a
function of some key parameters. It gives insight into the numeric distribution of the different parameters
outlined for the study, including their minimum, maximum, mean, standard deviation values, as well as
their first, second, and third quartiles as marked by the 25, 50, and 75% values, respectively. For example,
as shown in Table 1, the temperature in the datasets ranged between 73 and 250°F, while the 1st, 2nd,
and 3rd quartile values are 133, 177, and 214.5°F , respectively. The average of the 535 data points for
temperature is 172.097°F and the standard deviation is 50.938°F. Similarly, the pressure datasets ranged
between 82 and 3006 psia, while the 1st, 2nd, and 3rd quartile values are 235, 271, and 576.5 psia,
respectively. The mean and standard deviation for the range of data sets is 633.954 and 732.942 psia.
These trends were checked across other parameters that could influence scale precipitation and how they
vary in the range of datasets considered in this study.

Figure  1  shows  the  univariate  histogram/density  distribution  plots  for  the  different  variables that
influence  scale  precipitation.  Each  peak  indicates  the  density  of  values  of  a  parameter  in  the 
datasets that fall within the range of values of a given parameter. For instance, values of temperature
around 172°F has a mode of 30 as shown in Fig. 1a, while Fig. 1b shows that pressure of 250 psia has a
mode  of  290.  The  density  distribution  for  other  parameters  is  shown  in  Fig.  1(c-h), respectively.

Investigations were made specifically to ascertain how changes in Ca2+ and CO2 mole fractions, Ca2+ and
temperature, as well as Ca2+ and pressure, affect scale deposition in wells using scatter plots as shown in
Fig. 2a-c, respectively. From Fig. 2a, it can be seen that scale deposition is typically associated with wells
producing water at lower CO2 mole fractions. Figure 2b shows that scales also tend to precipitate at lower
pressure, while Fig. 2c shows that higher temperatures facilitate the precipitation of scales, all for a given
Ca2+ concentration. From the plots, it can also be seen that while the deposition of scale was noticed over
a wide range of values for both the temperature and CO2 mole fractions, the range of pressure over which
scale deposited is within a narrow margin of 200-300 psia.

Table 1: Statistical description of the dataset for scale appearance
Temperature Pressure CO2 mole Ca2+ HCO3G CO3G Inspection 

(°F) (pisa) frac. pH (ppm) (ppm) (ppm) result
Count 535.000000 535.000000 535.000000 535.000000 535.000000 535.000000 535.000000 535.000000
Mean 172.097196 633.954112 0.392932 6.930467 8666.110804 432.673645 245.902804 0.678505
Std 50.938062 732.942068 0.282606 0.474427 5474.505575 709.237190 80.898546 0.467488
Min 73.000000 82.000000 0.000057 5.100000 16.000000 26.000000 120.000000 0.000000
25% 133.000000 235.000000 0.169369 6.600000 4870.000000 216.000000 179.500000 0.000000
50% 177.000000 271.000000 0.341771 6.900000 7850.000000 317.000000 237.000000 1.000000
75% 214.500000 576.500000 0.548333 7.200000 11500.000000 442.000000 321.000000 1.000000
Max 250.000000 3006.000000 1.050000 8.400000 34700.000000 6466.000000 390.000000 1.000000
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Fig. 1(a-f): Univariate histogram/density distribution plots for the different variables affecting scale
appearance,  (a)  Temperature,  (b)  Pressure,  (c)  Ca2+,  (d)  HCO3G,  (e)  CO2  mole  frac.,  (f) pH,
(g) CO3

2G and (h) Inspection result
Each peak indicates the number of data points that fall within a given range of values
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Fig. 2(a-c): Investigating  the  impact  of  different  variables  on  scale deposition at a given Ca2+

concentration (a)  Showing  low  mole  fraction  of  CO2  and  low  concentration  of  Ca2+ 
promotes  scale deposition, (b) Shows pressures in a narrow margin below 400 psia, and
moderate   concentration   (below   200000   ppm)   of   Ca2+   promotes    scale   deposition
and (c) Showing high temperature (>150°F) and concentration of Ca2+ below 15,000 ppm
significantly promote scale formation, respectively

The pair plots showing bivariate relationships between variables in the dataset are shown in Fig. 3. These
plots explain the numeric distribution and relationships between pairs of the variables in the dataset, like
the temperature vs pressure, pressure vs CO2 mole fraction, etc. For example, the temperature vs pressure
bivariate plot in row 1, column 2 of Fig. 3, shows that most of the wells with temperature above 150°F had
their pressure lower than 300 psia, while wells at lower temperatures exhibited much higher pressures. This
indicates that extra precautions must be taken during the gas-lift operation in order not to increase the
pressure over a certain range but to decrease the temperature well enough to minimize scale formation.
The identity plots (e,g temperature vs temperature) are shown in histograms while the bivariate plots are
in scatter diagrams. The identity plots are like Fig 1, which shows the range of distribution of each
parameter value, while the scatter diagrams show the relationship among the variables investigated that
could promote scale formation.

The Hasan and Kabir30 model was used to investigate temperature variation of the fluid in the tubing
caused by the injected gas, which leads to changes in the overall heat transfer coefficient. It was observed
that the fluid temperature remained high in the entire length of the tubing if the oil production rate is
kept  reasonably  high  and  the  lift  gas  is  injected  at a rate that keeps the mass of the gas in the tubing
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Fig. 3: Pair plot showing the bivaria te relationship between variables in the dataset

about 10% of the total mass of the fluids. The high tubing fluid temperature was caused by the gas in the
annulus which reduces the overall heat transfer coefficient, thereby permitting the produced fluid mixture
to retain most of its high entering enthalpy42,43. Figure 3 shows an illustration of the effect of gas injection
rate on the temperature profile of the well.

From Fig. 4a and b, it can be seen that an increase in gas injection rate resulted in a slight decrease in the
temperature of the tubing fluids measured at the same depth and oil flow rate due to the cooling from
the expansion of the injected gas44,45. The extent to which the temperature decreases depends on some
factors, such as the overall heat transfer coefficient between the formation and the annular gas and the
overall heat transfer coefficient between the tubing fluid and the annular gas20,46.

However, owing to the low overall heat transfer coefficient between the tubing fluid and the annular gas
which maintains the temperature of the tubing fluid fairly high throughout the length of the string15,47,48

(except for the area very close to the wellhead), it becomes pertinent for an operator to diligently monitor
the changes in pressure and other well parameters which affects scale deposition in order to keep the well 
scale-safe.
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Fig. 4(a-b): (a)  Temperature  profile  for  a  gas-lifted   well   at   5%   gas  mass   fraction   in   the  
tubing and (b) Temperature profile for a gas-lifted well at 10% gas mass fraction in the tubing

The machine learning model, when tested against the actual field data, was able to predict the state of
the wells with an accuracy of over 98%.  A visual representation of the performance of the classification
model  on  the  test  dataset  is  presented  in  the  form  of  a  confusion  matrix,  as  shown  in the
heatmaps of Fig. 5a and b. This matrix shows that out of the 107 data points in the test dataset, 37 of the
wells predicted by the model to deposit scale deposited scales, and 68 wells that were predicted not to
have scale deposition did not deposit scale. One of the wells predicted by the model to deposit scale did
not, and scale was observed in one of the wells predicted not to deposit scale.

Aside from accuracy, other model evaluation metrics were used to evaluate the model performance, such
as the precision score, the recall score, and the F1 score, each having its specific advantages over the
other. A summary of these evaluation metrics for the classification models is given in Table 2. Which
accurately predicted 37 wells to deposit scale and 68 wells not to deposit scale, while falsely predicting
one well each to deposit scale and not to deposit scale.

Sensitivity analysis performed on the variables as shown in Table 3 to determine the impact of each
variable on the outcome of the models’ prediction revealed that the temperature and the pressure were
the  most  sensitive  parameters  for  developing  the  classification  model  while  the  CO2  mole  fraction,
pH,  Ca2+,  HCO3G  and  CO3

2G  contributed  marginally  to  the  final  output  of  the  model.  This  is  in
line with the study made by Dyer and Graham13 on the effect of temperature and pressure on oilfield scale
formation.

While this study focused on investigating the tendency of scale appearance and deposition in gas-lifted
wells, the main limitation lies in its narrow focus on carbonate scales, to the exclusion of other types of 
scales such as sulfates, halides, and silicates. This was a result of limited data on the other types of scales. 
Future studies should consider expanding the scope to include other types of scales to provide a more 
general understanding of the complex dynamics involved in scale deposition.
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Fig. 5: Confusion matrix showing the performance of the classification models

Table 2: Different metrics used in model evaluation
Metric Model performance
Accuracy score 0.9813
Precision score 0.9855
Recall score 0.9855
F1 score 0.9855

Table 3: Sensitivity analysis scores for variables used in classification model showing the importance of each variable on the
prediction of the model

Parameter Significance
Temperature 0.1794839 
Pressure 0.11247452
CO2 mole fraction 0.04502689
pH 0.0149293
Ca2+ 0.00709286
HCO3G 0.00514585
CO3

2G 0.00304605

CONCLUSION
Gas-lifting is one of the well-known techniques for improving production from depleted reservoirs and,
more especially, solution gas-driven reservoirs. However, gas-lifting has been identified as a potential
cause of scale deposition in oil wells due to its effect on the temperature and pressure of the produced
fluids. The effects of gas-lift operations on the temperature and pressure of the tubing fluids were studied,
and a feed-forward neural network machine learning model was developed to predict scale formation in
gas-lifted wells. Statistical metrics like the accuracy, precision, sensitivity, and specificity were used to
evaluate the model when employed on a test dataset. The model was able to accurately predict the status
of over 98% of the wells in the test dataset. Sensitivity analysis performed on the developed model
indicated  that  the  temperature  and  pressure  were  the  two  most  sensitive  parameters that
determine the predicted values. Thus, since an increase in gas injection rate only caused a slight change
in the temperature profile of the well, operators should therefore closely monitor the changes in the
tubing pressure to keep the well within the scale-safe window while utilizing the optimal potential of the
gas-lift system to enhance well productivity.

SIGNIFICANCE STATEMENT
One of the challenges encountered during gas-lifting is the formation of scale, which could occur from
cooling effects from the injected gas when mixed with the in-situ fluid in the wellbore. The deposition of
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scale inhibits optimal production from oil wells and could also lead to the complete loss of production.
In this study, the key parameters that promote the deposition of scale during gas-lifting were investigated,
and it was observed that temperature changes pose the biggest threat, followed by pressure. Other
variables have a minor influence on the deposition of scale. With this finding, it is important to ensure that
excessive temperature variation is minimized during gas lifting to prevent the precipitation of mineral salts
that could lead to scale formation. 
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